میانگین پذیری ضعیف مدولی برای جبرهای نیم گروه
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز
- author حمیده عبیدپور
- adviser عبدالمحمد فروزانفر عبدالمحمد امین پور
- publication year 1390
abstract
چکیده: هدف کلی در این رساله این است که نشان دهیم نیم گروه های معکوس پذیرو جابجایی که تحت اعمال تعریف شده جبرهای باناخ تشکیل می دهند، میانگین پذیر ضعیف مدولی هستند. در ابتدا با تعریف ضرب های مدولی دوطرفه تعویض پذیر دو مدولی روی یک جبر باناخ تعریف کلی میانگین پذیری ضعیف مدولی را ارائه می دهیم که تعریف میانگین پذیری ضعیف مدولی در حالت جابجایی بودن جبر باناخ و در حالت غیر جابجایی جبر، متفاوت است. در حالت تعویض پذیر، ارتباط بین دنباله های کامل متناهی کوتاه و میانگین پذیری ضعیف مدولی را بررسی می کنیم. سپس نشان می دهیم که اگر یک جبر باناخ میانگین پذیر ضعیف مدولی نباشد، نمی توان یک اشتقاق مدولی بین آن جبر و دوگان آن پیدا کرد. در حالت غیر تعویض پذیر میانگین پذیری ضعیف مدولی را تعریف می کنیم و نشان می دهیم که اگر یک جبر به طورضعیف میانگین پذیر باشد، آن گاه میانگین پذیر ضعیف مدولی نیز هست. در پایان ثابت می کنیم که اگرs یک نیم گروه معکوس پذیر و جابجایی باشد، l^1(s) میانگین پذیر ضعیف مدولی است. درمرجع [1] میانگین پذیری مدولی برای جبرهای نیم گروه مورد بررسی قرارگرفته است و این رساله که در ارتباط با مرجع [2] می-باشد میانگین پذیری ضعیف مدولی در مورد نیم گروه هایی که جبر باناخ جابجایی هستند مورد بررسی قرار می دهد که میانگین پذیری ضعیف مدولی نسبت به میانگین پذیری مدولی شرط ضعیف تری است.
similar resources
میانگین پذیری مدولی و میانگین پذیر مدولی ضعیف جبرهای نیم گروهی
در این پایان نامه به بسط مفهوم میانگین پذیری مدولی پرداخته ایم و هم ارزی میانگین پذیری مدولی و وجود قطر واقعی مدولی را به اثبات رساندیم و در ادامه قضیه مشهور جانسون را تعمیم دادیم و میانگین پذیری مدولی را برای کلاسی از جبرهای باناخ ثابت نمودیم، در واقع نشان دادیمs)l^1) به عنوان یک e))l^1-مدول میانگین پذیر مدولی است اگر و فقط اگر s میانگین پذیر باشد.
15 صفحه اولمیانگین پذیری مدولی و میانگین پذیری ضعیف مدولی برای دوگان دوم جبرهای باناخ
در این پایان نامه ابتدا در فصل اول تعاریف و قضایای مقدماتی مورد نیاز را بیان می کنیم سپس در فصل دوم به ارتباط میان میانگین پذیری جبر باناخ a و دوگان دوم آن یعنی جبر باناخ a^(**) می پردازیم و نشان می دهیم در حالت کلی میانگین پذیری جبر باناخ a^(**) ، میانگین پذیری a را نتیجه می دهد و نیز با اضافه کردن مفروضات دیگری به فرض میانگین پذیری ضعیف جبر باناخ a^(**) ، میانگین پذیری ضعیف a را نتیجه می گیری...
15 صفحه اولمیانگین پذیری مدولی ضعیف جبرهای باناخ مثلثی
در این مقاله a و b جبرهای باناخ یکدارند و فرض می کنیم m یک b,a- مدول باناخ یکدار باشد پرفسور فورست و مارکوس جبر باناخ مثلثی t را مورد مطالعه قرار داده و نشان داده اند که t به طور ضعیف میانگین پذیر است اگر و تنها اگر جبرهای گوشه ای a و b به طور ضعیف میانگین پذیر باشد. همجنین در این مقاله ابتدا نکاتی در مورد میانگین پذیری مدولی، نگاشت مدولی، اشتقاق مدولی و... بیان شده و سپس در رابطه با اشتقاق مدو...
میانگین پذیری مدولی جبرهای نیم گروهی
در این رساله به بررسی میانگین پذیری مدولی جبرهای نیم گروهی میپردازیم. میانگین پذیری مدولی جبرهای نیم گروهی خاصی را مورد بررسی قرار می دهیم. رابطه همنهشتی متناطر با این مفهوم تعریف کرده نشان می دهیم این رابطه همنهشتی با کوچکترین کلیفورد همنهشتی روی نیم گروه وارون مربوطه برابر است. همچنین نشان می دهیم میانگین پذیری نیم گروه وارون با میانگین پذیری نیم گروه خارج قسمتی متناطر با این رایطه همنهشتی مع...
15 صفحه اولمیانگین پذیری مدولی و میانگین پذیری مدولی ضعیف دوگان دوم جبرهای باناخ
در این پایان نامه میانگین پذیری مدولی ضعیف جبر باناخ a که با اعمال سازگار روی یک جبر باناخ دیگر a یک مدول باناخ است را تعریف کرده و نشان میدهیم که تحت چه شرایطی میانگین پذیری مدولی ضعیف a^(**) میانگین پذیری مدولی ضعیف a را نتیجه خواهد داد. همچنین به همراه نتایج دیگر، رابطه ی بین آرنز منظم پذیری مدولی یک جبر باناخ و میانگین پذیری مدولی دوگان دوم آن را بررسی می کنیم. به عنوان یک نتیجه ثابت می کنی...
n-میانگین پذیری ضعیف گسترش های مدولی جبرهای باناخ
در این پایان نامه مفهوم n-میانگین ضعیف را برای گسترش های مدولی جبرهای باناخ معرفی می کنیم و در ادامه به بررسی رابطه بین n- میانگین پذیری ضعیف و m-میانگین پذیری ضعیف جبرهای باناخ برای اعداد صحیح و متمایز m و n می پردازیم.
15 صفحه اولMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023